品牌 | 础肠谤别濒/安科瑞 | 应用领域 | 环保,食品,化工,地矿,交通 |
大数据技术对电网的意义主要表现在发电、输电和用电这叁个方面:在发电环节中,大数据技术能统计出很大范围的电力需求,然后通过收集的数据预测出后一段时间的用电负荷,发电领域在考虑预测结果的基础上进行有计划发电,这样有利于整个社会的生态文明建设;在输电环节,输电线路上的所有信息都可以使用大数据技术来进行收集和处理,此方法能使得低电压损耗率大大降低,还能保证线路的正常运行;在用户用电环节,所有用户的用电量能采用大数据技术进行整理,通过采纳电力市场中的*营销策略,引导用户拥有节约用电的理念,以此来推动电力产业的“集约化"发展。
3.2预测风电功率
由于现如今大规模风电并网对电力系统和电网调度的安全运行产生了严重影响,而对风电功率进行预测能使这个问题得到有效缓解。风电的特性是随机性和波动性,这个特性使得预测风电功率需以大量的历史数据作为支撑,此类数据主要包括风电机组信息、地貌形势、风电场实时和历史输出功率数据、实时和历史测风塔等数据。其中采集的风塔历史数据的时间分辨率短则超过10min,时长则超过1年;通过风电场采集的历史输出功率数据的时间分辨率要超过5min,数据的时长要超过1年。面对大量的历史数据,此时就需要建立可靠的预测模型来对风电功率进行预测,通过选择不同的时间尺度,结合实际工程应用需求,尝试多种预测模型对风电功率进行预测,以便得到更精准的预测结果。无线计量模块叁相电参量测测量支持复费率
3.3定位和治理配电网低电压
由于现在电网仍然存在低电压的问题,主要原因是整个电网系统升级较慢,以及用电负荷的大大增加,这样对用户的正常用电造成了负面影响。利用大数据技术能定位配电网低电压,电网的相关信息可通过用电信息采集系统和SCADA系统进行收集[7],这些相关信息如变压器和线路的电流电压断货负荷类型、功率因数等参数。与此同时,与配电网相关联的无功补偿、负载率、供电半径、配电网结构、故障情况等信息,为了深度了解电网低电压的原因,采用数据挖掘模型对配电网低电压的影响因素进行关联分析,提升了配电网合格率,对电网的安全运行给予保障。无线计量模块叁相电参量测测量支持复费率
3.4预警评估配电网重过载风险
伴随着用电量即电力需求的大幅度增长,传统“轻配重输"的工程建设模式已与现如今的发展需求不太符合,主要原因是常常会出现重过载的问题,因此不但对供电质量失去了保障,还影响了配电网的正常运行[8]。为了更方便的获取配电变压器和输电线路的历史和实时的三相电压、电流和功率因素等相关信息,可通过这些系统来获取,如用电信息采集系统、OMS、SCADA、AMI、OMS、关联营销业务等系统。然后采用综合分析的方法来评估配电变压器的相关特性,如容载比、配电网元件故障率、线路间负荷转移能力等。